Search results for "Signal recognition particle receptor"

showing 2 items of 2 documents

Human peroxin PEX3 is co-translationally integrated into the ER and exits the ER in budding vesicles

2015

The long-standing paradigm that all peroxisomal proteins are imported post-translationally into pre-existing peroxisomes has been challenged by the detection of peroxisomal membrane proteins (PMPs) inside the endoplasmic reticulum (ER). In mammals, the mechanisms of ER entry and exit of PMPs are completely unknown. We show that the human PMP PEX3 inserts co-translationally into the mammalian ER via the Sec61 translocon. Photocrosslinking and fluorescence spectroscopy studies demonstrate that the N-terminal transmembrane segment (TMS) of ribosome-bound PEX3 is recognized by the signal recognition particle (SRP). Binding to SRP is a prerequisite for targeting of the PEX3-containing ribosome•n…

0301 basic medicineLipoproteinsPeroxinBiologyEndoplasmic ReticulumBiochemistryenvironment and public healthPeroxins03 medical and health sciencesStructural BiologyGeneticsPeroxisomesHumansMolecular BiologySignal recognition particle receptorAdaptor Proteins Signal TransducingSec61 transloconSignal recognition particlebudding vesiclesEndoplasmic reticulumCèl·lules eucarioteshuman peroxisomal membrane protein PEX3Proteïnes de membranaMembrane ProteinsCell BiologyOriginal ArticlesIntracellular MembranesTransloconSEC61 TransloconTransport proteinCell biologyperoxisomal biogenesisProtein Transport030104 developmental biologyMembrane proteinOriginal ArticleRibosomesSignal Recognition Particle
researchProduct

Double-spanning Plant Viral Movement Protein Integration into the Endoplasmic Reticulum Membrane Is Signal Recognition Particle-dependent, Translocon…

2005

The current model for cell-to-cell movement of plant viruses holds that transport requires virus-encoded movement proteins that intimately associate with endoplasmic reticulum membranes. We have examined the early stages of the integration into endoplasmic reticulum membranes of a double-spanning viral movement protein using photocross-linking. We have discovered that this process is cotranslational and proceeds in a signal recognition particle-dependent manner. In addition, nascent chain photocross-linking to Sec61alpha and translocating chain-associated membrane protein reveal that viral membrane protein insertion takes place via the translocon, as with most eukaryotic membrane proteins, …

BioquímicaSec61Vesicle-associated membrane protein 8Receptors PeptideLipid BilayersReceptors Cytoplasmic and NuclearBiologyEndoplasmic ReticulumBiochemistryViral ProteinsMembranes (Biologia)Escherichia coliMolecular BiologySignal recognition particle receptorSignal recognition particleMembrane GlycoproteinsEndoplasmic reticulumCalcium-Binding ProteinsMembrane ProteinsSTIM1Cell BiologyTransloconTransmembrane proteinCell biologyPlant Viral Movement ProteinsCross-Linking ReagentsMutagenesisRNA ViralCarmovirusSignal Recognition ParticleSEC Translocation Channels
researchProduct